Creative Software Programming

9 — Polymorphism 1

Yoonsang Lee
Fall 2019

Questions from Last Lecture

IS constructor or destructor can be const member
function?

* — No. They cannot be declared as const, but can be
Invoked for const object.

* http://www.open-
std.org/jtcl/sc22/wqg21/docs/papers/2017/n4713.pdf

e See15.1& 154

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

Today's Topics

What is Polymorphism?

 Pointers, References and Inheritance
* Polymorphism in C++

 Virtual Function

 Virtual Destructor

 Caution: Object Slicing

What is Polymorphism?

* From a Greek word: “poly” means "many, much" and
“morphism” means "form, shape*

» The ability to create a variable, a function, or an object that
has more than one form. [wikipedia] - Ct&d (ZH1%).

* |n other words,

— Ability of type A to appear as and be used like another type B

— Ability to provide access to entities of different types through
single interface

* One of the fundamental OOP principles

Real-world Examples

- Steering wheel + accelerator + brake in trucks or cars.
the same interface for entities of different types

« \Volume + channel control in TV or DVD player remotes.

the same interface for entities of different types

 Shutter button for film or digital cameras.

the same interface for entities of different types

Types of Polymorphism

Subtype polymorphism (today’s topic)
— Ability to access a derived class object through its base class interface
— Often simply referred to as just “polymorphism”.

Ad hoc polymorphism
— Allows functions with the same name act differently for each type
— Overloading in C++

Parametric polymorphism
— Allows a function or a data type to be written generically
— Templates in C++

Coercion polymorphism
— (Implicit or explicit) casting in C++

An Example of Subtype Polymorphism

class Animal
{
public:
virtual string talk() = 0;
}:

class Cat : public Animal
{

public:
virtual string talk()
{ return "Meow!"; }

}i

class Dog : public Animal
{

public:
virtual string talk()
{ return "Woof!"; }

}i

volid letsHear (Animalé& animal)
{ cout << animal.talk() << endl; }

int main ()

{
Cat cat;
Dog dog;
letsHear (cat) ;
letsHear (dog) ;
return 0;

Pointers, References and Inheritance

* To use polymorphism in C++, you first have to
understand how to use pointers and references
with inheritance

* Recall that inheritance implies “is-a” relationship

— Acar is a vehicle.
A truck i1s a vehicle.
A cart is a vehicle.

Pointers with Inheritance

Qb w >

« Abase class (B) pointer can store

— the address of the base class (B) object
— the address of its derived class (C) object

— CANNOT store the address of the object of the parent of
the base class (2)

#include <iostream>
using namespace std;

class Person

{

public:

Y

void talk ()

{

cout <<

class Student

{

public:
void study ()

Y

class CSStudent

{

public:

Y

{

cout <<

"talk" << endl;

public Person

"study" << endl;

public Student

vold writeCode ()

{

cout <<

"writeCode" << endl;

int main ()

{

Person* pl
Person* p2
Person* p3

Student* sl
Student* s2
Student* s3

delete
delete
delete

delete
delete
delete

return

pl;
pZ;
p3;

sl;
s2;
sS3;

0;

new Person;

new Student;

new CSStudent;
new Person; // error

new Student;

new CSStudent;

#include <iostream>
using namespace std;

class Person

{
public:
void talk ()

{
cout << "talk" << endl;

Y

class Student : public Person

{
public:
void study ()

{
cout << "study" << endl;

Y

class CSStudent : public Student

{
public:
vold writeCode ()

{

cout << "writeCode" << endl;

Y

int main ()

{

Student st;

Person* person st = &st; // ok

Student* student st = &st; // ok
CSStudent* csstudent st = &st; //error!
CSStudent csst;

Person* person csst = &csst; // ok
Student* student csst = &csst; // ok
CSStudent* csstudent csst = &csst; //ok

return 0;

Pointers with Inheritance

« Aderived class (B) pointer can access
— the members of its base class (2)
— the members of the derived class (B)
— CANNOT access the members of its child class (C)

Qb w >

#include <iostream>
using namespace std;

class Person

{
public:

void talk()

{
cout << "talk" << endl;

Y

class Student

{

public:
void study ()
{

public Person

cout << "study" << endl;
i

class CSStudent

{
public:
void writeCode ()

{

public Student

cout << "writeCode" << endl;

Y

int

{

main ()

Student st;
Person* person_st = &st;

person st->talk();
person_st->study(); // error!

person_st->writeCode(); // error!

return 0;

int

main ()

Student st;
Student* student_st = &st;

student st->talk();
student st->study();

student st->writeCode(); // error!

return 0;

References with Inheritance

 ADbase class (B) reference can refer to

Qb w >

— the base class (B) object
— Its derived class (C) object

— CANNOT refer to the object of the parent of the base
class (A7)

 Exactly the same as the pointers!

#include <iostream>
using namespace std;

class Person

{
public:
void talk ()

{
cout << "talk" << endl;

Y

class Student : public Person

{
public:
void study ()

{
cout << "study" << endl;

Y

class CSStudent : public Student

{
public:
vold writeCode ()

{

cout << "writeCode" << endl;

Y

int main ()

{

Student st;

Person& person st = st; // ok

Student& student st = st; // ok
CSStudenté& csstudent st = st; //error!
CSStudent csst;

Person& person csst = csst; // ok
Student& student csst = csst; // ok
CSStudenté& csstudent csst = csst; //ok

return 0O;

References with Inheritance

o Aderived class (B) reference can access

— the members of its base class (2)
— the members of the derived class (R)
— CANNOT access the members of its child class (C)

 Exactly the same as the pointers!

Qb w >

#include <iostream>
using namespace std;

class Person

{
public:

void talk()

{
cout << "talk" << endl;

Y

class Student

{

public:
void study ()
{

public Person

cout << "study" << endl;
i

class CSStudent

{
public:
void writeCode ()

{

public Student

cout << "writeCode" << endl;

Y

int

{

main ()

Student st;
Personé& person_st = st;

person st.talk();
person_st.study(); // error!

person_st.writeCode(); // error!

return 0;

int

main ()

Student st;
Studenté& student_st = st;

student st.talk();
student st.study();

student st.writeCode(); // error!

return 0;

Polymorphism in C++

 Subtype polymorphism (will be referred to as just
“polymorphism” in this lecture) In C++ requires
references or pointers

— In C++, Polymorphic behavior is only possible when an
object is referenced by a reference or a pointer

« Aderived class object is treated as if it were its
base class type by accessing through a pointer or
reference!

Polymorphism in C++

 In this example,

« Derived class objects
(Student st,
CSStudent csst)

 are treated as if they were
their base class type
(Person)

* Dby accessing through
references (person st,
person csst)

int main ()

{

Student st;
CSStudent csst;

Person& person_st = st;
Person& person csst = csst;

person_st.talk();
person_csst.talk();

Quiz #1

* Go to https://www.slido.com/
* Join #csp-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

Recall: Overriding Member Function

* You can override a member function to provide a
custom functionality of the derived class.

// Vehicle class.

class Vehicle {

public:

Vehicle () {}
void Accelerate();
void Decelerate () ;

LatLng
double
double

private:

LatLng

double

double
i

GetLocation () const;

GetSpeed () const;
GetWeight () const;

location ;
speed ;
welght ;

// Car class.
class Car : public Vehicle {
public:

Car () : Vehicle () {}

int GetCapacity () const;

// Override the parent's GetWeight() .
double GetWeight () const {
return Vehicle::GetWeight () tpassenger weight ;
}
private:
int capacity ;
double passenger weight ;

¥

Overriding in CSStudent Example

#include <iostream>
using namespace std;

class Person

{
public:

void talk()
{

cout << "I'm a person" << endl;
I

class Student

{
public:

void talk()
{

public Person

cout << "I'm a student" << endl;

}
void study ()

{
cout << "study" << endl;

Y

class CSStudent

{

public:
void talk()
{

public Student

cout << "I'm a CS student" <<
endl;
}

void writeCode ()

{

cout << "writeCode" << endl;
Y

int main ()
{
CSStudent csst;
csst.talk() ;
// Output: "I'm a CS student"

Personé& person_csst = csst;
person_csst.talk();

// Output: "I'm a person" ??

return 0;

Why Is Person: : talk () called instead of
CSStudent: :talk()?

« By default, C++ compiler matches a function call
with the correct function definition at compile time
based on declared type (called static binding).

 Base class pointers and references only know the
base class members at compile time.

More Examples

{

int main ()

Person p;
Student st;
CSStudent csst;

Person& person p = p;

Person& person st = st;

Person& person csst = csst;

person _p.talk(); // Person::talk()
person_st.talk(); // Person::talk()
person_csst.talk(); // Person::talk()

Studenté& student st = st;
Studenté& student csst = csst;

student st.talk(); // Student::talk()
student csst.talk(); // Student::talk()

return 0;

How to get polymorphic behavior?

e But this 1s not what we want!

* \We often want to customize the behavior of the
same member function in each derived class

— so that we get different behaviors through the same
interface — Polymorphism!

Like this:
Person& person p = p;
Person& person st = st;
Person& person csst = csst;
person_p.talk(); // Person: :talk()
person_st.talk(); // Student::talk()
person _csst.talk(); // CSStudent::talk()

Virtual Functions

* By declaring the member function virtual, you
can do this!

virtual void talk () ;

 Calling a virtual functions means:

e C++ compiler match a function call with the
correct function definition at runtime based on
actual type (called dynamic binding).

Virtual Functions

 Virtual functions are keys to implement polymorphism
In C++.
— declare polymorphic member functions to be 'virtual’,

— and use the base class pointer to point an instance of the
derived class,

— then the function call from a base class pointer will execute
the function overridden in in the derived class.

* Where to specify ‘virtual’?

— Actually, ‘virtual’ keyword is not necessary in the derived
class.

— But specifying “virtual’ for all virtual functions in descendant
classes is recommended.

Virtual Function Example

// Vehicle classes.

class Vehicle {
public:
virtual void Accelerate () {

cout << "Vehicle.Accelerate";

}
o

class Car : public Vehicle {
public:
virtual void Accelerate() {
cout << "Car.Accelerate";
}
}:

class Truck : public Vehicle {
public:
virtual void Accelerate();
cout << "Truck.Accelerate";

I

// Main routine.

int main () {
Car car;
Truck truck;
Vehicle* pv = &car;
pv->Accelerate() ;
// Outputs Car.Accelerate.

pv = &truck;
pv->Accelerate () ;
// Outputs Truck.Accelerate.

Vehicle vehicle;
pv = &vehicle;

pv->Accelerate() ;
// Outputs Vehicle.Accelerate.
return 0O;

Virtual Function Example (w/o virtual)

// Vehicle classes. // Main routine.

class Vehicle { int main () {
public: Car car;
void Accelerate () { Truck truck;

cout << "Vehicle.Accelerate";

}
o

class Car : public Vehicle {
public:
void Accelerate () {
cout << "Car.Accelerate";
}
}:

class Truck : public Vehicle {
public:
void Accelerate () ;

cout << "Truck.Accelerate";

I

Vehicle* pv = &car;
pv->Accelerate() ;
// Outputs Vehicle.Accelerate.
car.Accelerate() ;

// Outputs Car.Accelerate.

pv = &truck;
pv->Accelerate() ;
// Outputs Vehicle.Accelerate.
truck.Accelerate () ;

// Outputs Truck.Accelerate.

Vehicle vehicle;
pv = &vehicle;

pv->Accelerate();
// Outputs Vehicle.Accelerate.
return 0O;

Virtual Functions in CSStudent Example

#include <iostream>
using namespace std;

class Person

{

public:
virtual void talk()
{

cout << "I'm a person" << endl;
I

class Student

{

public:
virtual void talk()
{

public Person

cout << "I'm a student" << endl;

}
void study ()

{
cout << "study" << endl;

Y

class CSStudent

{

public:
virtual void talk()
{

public Student

cout << "I'm a CS student" <<
endl;
}

void writeCode ()

{

cout << "writeCode" << endl;
Y

int main ()
{
CSStudent csst;
csst.talk() ;
// Output: "I'm a CS student"

Personé& person_csst = csst;
person_csst.talk();

// Output: "I'm a CS student"

return 0O;

Another Example

{

{

person->talk () ;

int main ()

void makePersonTalk (Person* person)

vector<Person*> people;

people.push back (new
people.push back (new
people.push back (new
people.push back (new

people.push back (new
people.push back (new
people.push back (new

(
(
(
people.push back(
(
(
(

14

Person)
Person)
Student
Student
Person) ;

Student) ;

CSStudent) ;
CSStudent) ;

14

) ;
)

for(int i=0; i<people.size(); ++1i)
makePersonTalk (people[i]) ;

for(int i=0; i<people.size(); ++1i)

delete people[i];

return 0O;

CSStudent Example w/o Virtual Functions

#include <iostream>
using namespace std;

class Person

{
public:

void talk()
{

cout << "I'm a person" << endl;
I

class Student

{
public:

void talk()
{

public Person

cout << "I'm a student" << endl;

}
void study ()

{
cout << "study" << endl;

Y

class CSStudent

{

public:
void talk()
{

public Student

cout << "I'm a CS student" <<
endl;
}

void writeCode ()

{

cout << "writeCode" << endl;
Y

int main ()
{
CSStudent csst;
csst.talk() ;
// Output: "I'm a CS student"

Personé& person_csst = csst;
person_csst.talk();

// Output: "I'm a person"

return 0;

Quiz #2

* Go to https://www.slido.com/
* Join #csp-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

Destructor and Virtual

class A {

public:
A() { cout << " A” << endl; }
~A() { cout << " ~A” << endl; }

Y

class AA : public A {

public:
AA () { cout << " AA” << endl; }
~AA () { cout << " ~AA” << endl; }

1

int main () {
AA* pa = new AA; // OK: prints ' A AA'.
delete pa; // prints ' ~AA ~A'.

return 0O;

Destructor and Virtual

« What happens if a derived class object is 'deleted’
by Its base class pointer?

class A {
public:
A() { cout << " A"; }
~A() { cout << " ~A"; }
i

class AA : public A {

public:
AA() { cout << " AA"; }
~AA () { cout << " ~AA"; }
}i
int main () {
A* pa = new AA; // OK: prints ' A AA'.
delete pa; // Hmm..: prints only ' ~A'.

return 0O;

}

Virtual Destructor

* What happens if a derived class object is 'deleted’ by
Its base class pointer?

 |f the base class destructor IS not virtual,

— only the base class destructor is called
— the derived class destructor is not called

* This may cause memory leak

— Think about this case: A derived class destructor has the code
that delete its member variables which are assigned by
new IN ItS constructor

#include <iostream>
using namespace std;

class Shape

{

public:
Shape () {1}
~Shape () {}

Y

class Rectangle : public Shape
{
private:
int* width;
int* height;
public:
Rectangle ()
{
width = new int;
height = new int;
cout << "Rectangle ()" << endl;
}
~Rectangle ()
{
delete width;
delete height;
cout << "~Rectangle ()" << endl;

Y

int main ()

{

Shape* shapel
delete shapel;

return 0O;

new Rectangle;

Virtual Destructor

« What happens if a derived class object is 'deleted’
by Its base class pointer?

* |If the base class destructor IS virtual,

— the derived class destructor is called

— and then base class destructors is called (reverse order of
constructor calls)

Class C (Base Class 2)

Class B (BaseClass 1)

'

Class A (Derived Class)

Order of Constructor Call Order of Destructor Call
1. €() (Class C's Constructor) 1. ~A() (Class A's Destructor)
2. B() (Class B's Constructor) 2. ~B() (Class B's Destructor)

3. A() (ClassA's Constructor) 3. ~C() (Class C's Destructor)

#include <iostream>
using namespace std;

class Shape
{
public:
Shape () {}
virtual ~Shape () {}

Y

class Rectangle : public Shape
{
private:
int* width;
int* height;
public:
Rectangle ()
{
width = new int;
height = new int;
cout << "Rectangle ()" << endl;
}

virtual ~Rectangle()
{
delete width;
delete height;
cout << "~Rectangle ()" << endl;

Y

int main ()

{

Shape* shapel
delete shapel;

return 0O;

new Rectangle;

When do we need a virtual destructor?

* A destructor of a base class should be virtual if
— Its descendant class instance is deleted by the base class pointer.

(-.on)
— any of member function is virtual (which means it’s a polymorphic
base class).
class A {
public:
A() { cout << " A"; }
virtual ~A() { cout << " ~A"; }

[

class AA : public A {

public:
AA() { cout << " AA"; }
virtual ~AA() { cout << " ~AA"; }
i
int main () {
A* pa = new AA; // OK: prints ' A AA'.
delete pa; // OK: prints ' ~AA ~A'.

return 0;

}

Virtual Destructor

 Note that constructors cannot be virtual

— "virtual" allows us to call a function knowing only an
Interfaces and not the exact type of the object.

— But to create an object, you need to know the exact type
of what you want to create.

— Bjarne Stroustrup's C++ Style and Technique FAQ: Why
don't we have virtual constructors?

http://www.stroustrup.com/bs_faq2.html#virtual-ctor

Quiz #3

* Go to https://www.slido.com/
* Join #csp-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

CAUTION: Copying a derived class object
to a base class object

#include <iostream>
using namespace std;
class Animal{
public:
virtual void makeSound () {cout << " (none)" << endl;}
i
class Dog : public Animal {
public:
virtual void makeSound() {cout << "bark" << endl;}
}i
int main ()

{

Animal animal;

animal .makeSound(); // " (none)"
Dog dog;
dog.makeSound(); // "bark"

// A typical way for polymorphism
Animal& goodDog = dog;
goodDog.makeSound(); // "bark"

[/ 2?7
Animal badDog = dog;
badDog.makeSound(); // " (none)"

CAUTION: Avoid Object Slicing

* In C++, object slicing occurs when a derived class
object Is copied to a base class object.

— Additional attributes of a derived class object are “sliced off”

class Base { int x, y; };

class Derived : public Base { int z, w; };

int main ()
{

Derived d;

Base b = d; // Object Slicing, z and w of d are sliced off
}

* Note that C++ polymorphism works only with
references or pointers, not with objects.

Next Time

 Labs In this week:
— Labl: Assignment 9-1
— Lab2: Assignment 9-2

* Next lecture:
— 10 - Polymorphism 2

